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Abstract

A novel, simple iterative algorithm based on dumped heat wave is used to calcu-
late temperature distribution in finite medium in case of non-Fourier (hyperbolic)
heat conduction. In this algorithm the temperature is calculated explicitly in one
simple calculation that is repeated for each time step as the heat wave marches
through the medium with constant speed. When the wave reaches a boundary of
the medium it bounces back and moves in the opposite direction. All simple initial
and boundary conditions can be modelled. An example of using the algorithm in
case of finite, thermally insulated medium is given and the results are compared
with exact analytical solution.
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1 Introduction

Heat flow (~q) in solids is generally regarded as a diffusion-like process, which
is described by Fourier law

~q = −λgradT, (1)

where λ is the thermal conductivity and gradT is the temperature gradient.
Temperature distribution is a solution of the classical (Fourier) heat conduc-
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tion equation [1]:

∂T

∂t
= α∆T (2)

where α is the thermal diffusivity, ∆ is Laplace operator and T = T (~r, t) is
the temperature in space-time point (~r, t). Equation (2) represents a partial
differential equation (PDE) of parabolic type and its analytical solutions show
a paradoxical behavior of infinite speed of propagation of the thermal distur-
bance. Any local change in temperature causes an instantaneous perturbation
at each point of the medium, in whatever distance from the origin. It is in
contradiction with the theory of relativity and also with known mechanisms
of heat conduction.

Experiments with second sound in solid helium and in other crystalline solids
[2], at very low temperatures [3], and at very short duration [4] clearly showed
that the heat flows as a dumped wave. If the crystal structure is almost defect
free (perfect) and the conditions for the second sound are met, then after
a pulse heating an observable humplike formation of increased temperature
(dumped heat wave) moves with a constant speed through the medium. The
wave bounces back and forth from the boundaries while slowly dissipating its
energy along the path. The damped heat wave (DHW) is described by PDE of
hyperbolic type first derived by Maxwell [5] and later postulated by Vernotte
[6] and Cattaneo [7]:

τ
∂2T

∂t2
+

∂T

∂t
= α∆T, (3)

where τ is the thermal relaxation time. Speed of propagation of the thermal

wave is v =
√

α/τ . Equation (2) is a limiting case of Equation (3) for τ → 0.

Analytical solutions for non-Fourier Equation (3) have been found only for a
limited set of geometries and boundary conditions [8]. Existing standard soft-
ware for numerical calculations of temperature distribution is based mainly on
Fourier heat conduction equation. Therefore, it is hard to model non-Fourier
heat conduction processes in real situations for engineers and designers with-
out programming capabilities.

Recently, we have developed a novel, simple iterative algorithm based on
dumped heat wave for approximate calculation of temperature distribution
in finite medium for Fourier heat conduction [9]. This paper will show that
this algorithm can be used to calculate temperature distribution in one di-
mensional finite medium also for non-Fourier heat transfer.
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2 Analytical Solution

Analytical solution of Equation (3) for the temperature distribution in an
isotropic homogeneous finite medium (0 ≤ x ≤ L), with zero initial tempera-
ture, adiabatically insulated boundaries, with one surface heated by a stepwise
heat pulse of duration t1 is given by [10]

V (x, t) =
1

t1

t1∫

0

[
F (x, t− t′)− τ

∂F (x, t− t′)
∂t′

]
dt′, (4)

where

F (x, t) =
L√
ατ

exp
(
− t

2τ

)

×
∞∑

k=0

{
I0

[
1

2τ

√
t2 −

(
2kL + x

)2 τ

α

]
H

[
t− (2kL + x)

√
τ

α

]

+ I0

[
1

2τ

√
t2 −

(
2kL + 2L− x

)2 τ

α

]
H

[
t− (2kL + 2L− x)

√
τ

α

]}
, (5)

H(t) is Heaviside unit step function, and I0(z) is modified Bessel function of
the first kind zero order.

The analytical solution for a finite medium (L = 1 cm, α = 0.025 cm2/s,
τ = 10 s) heated by a stepwise pulse of duration t1 = 2 s, is shown in Figure
1. Temperature profiles are calculated using Equation (4) at three different
times t = t1, 8t1, 17t1. Dominant feature of this type of heat transfer is a
thermal wave, which is travelling through the medium, bouncing back and
forth from the boundaries, decaying exponentially with time and dissipating
its energy along its path.

3 Algorithm Description

In our algorithm for calculation of temperature distribution the medium is
divided into N equal slabs of thickness ∆l = L/N . These slabs are replaced
by a perfect conductor of the same heat capacity separated by thermal resis-
tance ∆l/λ, so the temperature within a slab at any given time is constant.
Heat propagates from one slab to another due to existence of a temperature
difference between the slabs. The wave takes certain portion (given by the in-
ner transfer coefficient 0 < ξ < 1) of excessive heat energy from one slab and
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Fig. 1.
Temperature distributions in a finite medium calculated using the analytical

solution given by Equation (4).

moves that amount to the next one (redistribution), thus lowering the temper-
ature difference between the two neighbor slabs. The wave starts from the left
boundary slabs and marches in space from one pair of slabs to another, redis-
tributing the thermal energy between the slabs. When it reaches the boundary
of the medium, the wave bounces back and moves in the opposite direction in
a perpetual manner.

Slab temperatures are Ti,m ≡ T (xi, tm), where xi, (i = 0, 1, 2, . . . , N − 1) is
a spatial point (middle of the ith slab), and tm = m∆t, (m = 0, 1, 2, . . .)
is discrete time point. Temperature distribution at time tm+1 when the heat
wave is marching from left to right is given by:

Tn,m+1 = Tn,m − ξ(Tn,m − Tn+1,m)δn,m,

Tn+1,m+1 = Tn+1,m + ξ(Tn,m − Tn+1,m)δn,m,

for n = 0, 1, 2, . . . , N − 1, (6)

where δn,m is Kronecker delta. Temperature of each slab changes twice as the
wave passes the slab.

Similarly, the temperature distribution at time tm+1 when the heat wave is
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Fig. 2.
Dumped heat wave in a finite medium. Inner transfer coefficient ξ = 0.95.

marching in opposite direction from right to left:

T2N−n,m+1 = T2N−n,m − ξ(T2N−n,m − T2N−n−1,m)δn,m,

T2N−n−1,m+1 = T2N−n−1,m + ξ(T2N−n,m − T2N−n−1,m)δn,m,

for n = N,N + 1, N + 2, . . . , 2N − 1. (7)

An example of the heat wave in one-dimensional finite medium with ξ = 0.95
is shown in Figure 2. The medium is divided into N = 6 slabs. The wave height
is reduced from 10 to 3.61 units after 28 time steps. The rest of the media is
at about 1.2 units. The wave height decays exponentially with time, similarly
as in the solution given by Equation (4). Sum of all heights in the medium is
always equal to 10, in accordance with the total energy conservation law.

When the heat wave imitates diffusion (parabolic heat transfer) then the wave
is strongly dumped (ξ < 0.5) and its actual position is not important. The
time step ∆t is therefore chosen to be equal to one loop time interval. On the
contrary, the wave position is essential in the case of hyperbolic heat transfer,
when the heat wave is much less dumped (ξ → 1) and moves across the
medium with a constant speed. The time step in non-Fourier heat transfer
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has to be equal to the heat pulse duration (∆t = t1). Time origin is also set
to t1 when heat pulse already entered the medium. Slab thickness ∆l is then
given by

∆l = vt1 =

√
α

τ
t1. (8)

Fraction L/∆l defines the number of slabs N which should be an integer
number, equal or bigger than 5. In other words, the heat pulse duration t1
should be at least 5 times less than the time t∗ = L

√
τ/α, needed for heat

wave to reach the opposite end of the medium. These conditions limit the use
of our algorithm, especially for long pulses, or very thin layers.

The inner transfer coefficient ξ for hyperbolic heat transfer is defined as

ξ =
(
1 +

∆t

2τ

)−1

. (9)

When the wave imitates non-Fourier heat transfer, the inner transfer coeffi-
cient is 1 > ξ & 0.9. It follows from Equation (9) that the upper limit for the
time step ∆t is given by:

∆t . 2

9
τ. (10)

This introduces a limit to the pulse duration in comparison with the relaxation
time that can be modelled by our algorithm.

Figure 3(a)(b)(c) show the temperature distributions in a finite medium for
the case with L = 1 cm, α = 0.025 cm2/s, τ = 10 s, t1 = 2 s. The inner transfer
coefficient is ξ = 0.90909091. Initial temperature (at t = 2 s) is 10 units for
the first slab (from left) and the rest of the medium is at zero temperature.
There are no heat losses at the boundaries. The temperature distribution
calculated using our algorithm is compared with the exact analytical solution
given by Equation (4). In non-Fourier heat transfer it is important to know the
temperature distribution in early stages after the heat pulse, so the profiles
are calculated for: (a) t = 4 s; (b) t = 18 s; and (c) t = 32 s. It can be seen,
that the calculated temperatures are in a good agreement with the analytical
ones.

If there are heat losses from the medium surfaces a part of the excessive
thermal energy leaves the medium, when the wave reaches the boundary slabs.
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Fig. 3. Temperature distributions in a finite medium. Temperatures calculated using
our algorithm (solid lines) are compared with exact analytical solutions (dotted
lines) given by Eq. (4). The profiles are: (a) at t = 4 s; (b) at t = 18 s; and (c) at
t = 32 s.
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Temperatures of the boundary slabs are furthermore changed due to the heat
losses:

TN−1,N = TN−1,N−1 − ζ(TN−1,N−1 − TA), (11)

and

T0,2N+1 = T0,2N − ζ(T0,2N − TA), (12)

where ζ is the surface transfer coefficient and TA is the ambient temperature.

Various boundary conditions can be modelled by adjusting the surface transfer
coefficient. In the case ζ = 1 the constant temperature (equal to the ambient
temperature) boundary condition is being simulated. Adiabatically insulated
surface is given by ζ = 0. Nonlinear conditions can be also modelled, e.g.
radiation from the surface, in which the rate of heat energy leaving the surface
is proportional to

σε(T 4
i − T 4

A),

where σ is the Stefan-Boltzmann constant and ε is the emissivity of the surface.
Temperature difference of the fourth power of the temperatures will be used
in Eqs. (11)-(12).

4 Conclusion

Temperature distribution in a finite medium in case of non-Fourier heat con-
duction can be calculated using a simple iterative algorithm based on dumped
heat wave. In this algorithm the temperature is calculated explicitly in one
simple calculation that is repeated for each time step as the heat wave marches
through the medium with a constant speed.

Proposed algorithm can be used by engineers and designers as a fast, easy to
understand and easy to implement alternative to existing numerical and ana-
lytical methods. It could simplify hardware and software needs for temperature
and heat flux calculations in real applications and open new possibilities for
improving measurement and non-destructive testing procedures used in this
field.
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